Opportunities and uncertainties in the EMEP-WRF model

Massimo Vieno,

Tomas Liska, Janice Scheffler, Yuanlin Wang, Rachel Beck, James Bullock, Ed Carnell,

Sam Tomlinson, Ulli Dragosits, Eiko Nemitz

UK Centre for Ecology & Hydrology NATIONAL CAPABILITY International science for net zero plus

FOR GLOBAL CHALLENGES

The EMEP-WRF model

EMEP4UK specific papers ACP Vieno et. al, 2010, 2014, 2016, ERL Vieno et. al, 2016, GMD Ge et. al, 2021, ACP Ge et. 2022, Science Gu et al. 2021

EMEP MSC-W model (ACP Simpson et al., 2012) and EMEP 2023 report

WRF (Skamarock, W. C. wt al., 2019)

EMEP MSC-W model www.emep.int - https://github.com/metno/emep-ctm

EMEP4UK model www.emep4uk.ceh.ac.uk

NAEI emissions: https://naei.beis.gov.uk/data/mapping

EMEP emissions:

EDGAR emissions: https://edgar.jrc.ec.europa.eu/emissions_data_and_maps

HTAP emissions: https://edgar.jrc.ec.europa.eu/dataset_htap_v3

WRF model: https://www2.mmm.ucar.edu/wrf/users/

EMEP-WRF in an atmospheric chemistry transport model and it is <u>based/identical</u> on the <u>EMEP MSC-W</u> <u>model (www.emep.int</u> - Norwegian Meteorological office)

• Meteorology driver is the Weather Research & Forecasting model (<u>www.wrf-model.org</u>)

• The typical vertical domain from the surface (~45 m) up to 100hPa (~16 km)

Globally at 1°×1° degree and with nested domains at 0.1°×0.1°

The emissions are derived from NAEI (UK), EMEP (EU), EDGAR (global), and HTAP (Global)

Chemistry transformation, removal processes (dry and wet) are implemented

From global to urban scale modelling with the EMEP-WRF model

Global 1°x1°

Denby, B. R., Gauss, M., Wind, P., Mu, Q., Grøtting Wærsted, E., Fagerli, H., Valdebenito, A., and Klein, H.: Description of the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model, Geosci. Model Dev., 13, 6303-6323, https://doi.org/10.5194/gmd-13-6303-2020, 2020

ACTM across scales and domains

Currently, it is remarkably easy to apply a complex ACTM (EMEP, WRF-Chem, GEOS-Chem, CMAQ, etc)

- Anywhere in the world
- From historical years (e.g. ERA5 1940 up to present days) to forecast (GFS and ERA5)

But it is very difficult to assess the uncertainties in the model results

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 https://edgar.jrc.ec.europa.eu/dataset_htap_v3 https://www.emep.int

• Emissions are available at remarkably spatial high res for the entire planet (EDGAR, HTAP, ECLIPSE, etc..)

Some challenges...

- Evaluation of the WRF meteorology (we use the NOAA website)
- Which micro physics options to use in WRF, or aerosols scheme in EMEP?
- Emissions: both anthropogenic and biogenic
- Evaluation for concentrations outside the US, Europe, and perhaps China... is very difficult
- Dry deposition is difficult to evaluate for N_r compounds (and other chemical compounds)
- Ad-hoc measurement/campaigns done across the world are also a hard to gather
- In the UK, the R package OpenAir did simplify the availability of the AURN

What are the largest sources of uncertainties in ACTMs?

A personal and very incomplete list (not in any order)

- 3D (+time) meteorology (wind, rainfall, temperature, etc.)
- 3D (+time) emissions (anthropogenic and biogenic)
- Missing sources
- Human errors
- Chemical complexity (MCM, CRI vs simplified EMEP)
- Removal processes
- Model vs observations (apple and pears)

Model resolution for specific pollutants (very important for NO_x not as much for PM_{25})

WRF calculated meteorology

Micro Physics Options (mp_physics)		
Kessler Scheme	option 1	Kessler, E., 1969: On the distribution and continuity of water substance in atmoshperic circulations. <i>Meteor. Monogr.</i> , 32 , Amer. Meteor. Soc. doi:10.1007/978-1-935704-38-2_1 PDF
Purdue Lin Scheme	option 2	Chen, SH. and WY. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80(1), 99–118. doi:10.2151/jmsj.80.99 PDF
WRF Single-moment 3-class and 5-class Schemes	options 3 & 4	Hong, Song-You, Jimy Dudhia, and Shu-Hua Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. <i>Mon. Wea. Rev.</i> , 132 , 103-120. doi:10.1175/1520-0493/2004/132<0103:ARATIM>2.0.CO;2 PDF
Eta (Ferrier) Scheme	option 5	NOAA, cited 2001: National Oceanic and Atmospheric Administration Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. [Available online at http://www.emc.nceo.ncea.gov/mmb/mmboli/eta12tpb/.]
WRF Single-moment 6-class Scheme	option 6	Hong, SY., and JO. J. Lim, 2006: The WRF single-moment 6- class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 120-151. Hong and Lim, 2006 PDF
Goddard Scheme	option 7	Tao, Wei–Kuo, Joanne Simpson, Michael McCumber, 1989: An Ioe–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231–235. doi:10.1175/1520-0493(1989)117×0231:AIWSA>2.0.CC; PDF Tao, WK., D., Wu, S. Lang, JD. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and obser- vations. J. Geophys. Res. Atmos., 121, 1278–1306. 406:10.1002/2015JD023988
Thompson Scheme	option 8	Thompson, Gregory, Paul R. Field, Roy M. Rasmussen, William D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095–5115. doi:10.1175/2008MWR2387.1 PDF
Milbrandt-Yau Double Moment Scheme	option 9	Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. <i>J. Atmos. Sci.</i> , 62, 3061–3064. doi:10.1176/JAS3534.1 PDF Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment

Planetary Boundary Layer (PBL) Physics Options (bl_pbl_physics)			
Yonsei University Scheme (YSU)	option 1	Hong, Song-You, Yign Noh, Jimy Dudhia, 2008: A new vertical diffusion package with an explicit treatment of entrainment processes. <i>Mon. Wes. Rev.</i> , 134 , 2318–2341. <u>doi:10.1175/MWR3199.1</u> PDF	
Mellor-Yamada- Janjic Scheme (MYJ)	option 2	Janjic, Zavisa I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. <i>Mon. Wea. Rev.</i> , 122 , 927–945. doi:10.1175/1520- 0493/1994/122%300927:TSMECM%3e2.0.CO:2 PDF Mesinger, F., 1993: Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. <i>Res. Activ. in Atmos.</i> and Ocean. <i>Mod., WMO</i> , Geneva, CAS/JSC WGNE Rep. No. 18, 4.28-4.29. PDF	
NCEP Global Forecast System Scheme	option 3	Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. <i>Mon.</i> <i>Wea. Rev.</i> , 124 , 2322–2339. <u>doi:10.1175/1520- 0493(1996)124<2322:NBLVDI>2.0.CO;2. PDF</u>	
Quasi–normal Scale Elimination (QNSE) Scheme	option 4	Sukoriansky, S., B. Galperin, and V. Perov. 2005: Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice. <i>Bound</i> —Layer Meteor. 117, 231–257. <u>doi:10.1007/s10548-004-8848-4</u> PDF	
Mellor-Yamada Nakanishi Niino (MYNN) Level 2.5 and Level 3 Schemes	options 5 & 6	Nakanishi, M., and H. Nino, 2006: An improved Mellor- Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. <i>Bound. Layer Meteor.</i> 119 , 397–407. doi:10.1007/s10548-005-9030-8 PDF Nakanishi, M., and H. Nino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. <i>J. Meteor. Soc. Japan</i> , 87 , 895–912. doi:10.2151/imsj.87.895 PDF Olson, Joseph B., Jaymes S. Kenyon, Wayne M. Angevine, John M. Brown, Mariusz Pagowski, and Kay Sušelj. 2019: A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF-ARW. NOAA Technical Memorandum OAR GSD, 61 , pp. 37. doi:10.25923/n9wm-be49 PDF	
Asymmetric		Pleim, Jonathan E., 2007: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I:	

Cumulus Parameterization Option				
Kain–Fritsch Scheme	option 1	Kain, John S., 2004: The parameterization: An up doi:10.1175/1520-0450(PDF		
Moisture– advection–based Trigger for Kain– Fritsch Cumulus Scheme	kfeta_trigger = 2	Ma, Lei–Ming, and Zhe- the cumulus parameteri: Convection trigger. Atm doi:10.1016/j.atmosres. PDF		
RH-dependent Additional Perturbation to option 1 for the Kain-Fritsch Scheme	kfeta_trigger = 3			
Betts-Miller-Janjic Scheme	option 2	Janjic, Zavisa I., 1994: T Further developments o turbulence closure sche doi:10.1175/1520-0493(PDF		
Grell–Freitas Ensemble Scheme	option 3	Grell, G. A. and Freitas, stochastic convective pa modeling, <i>Atmos. Chem</i> 14-5233-2014. <u>Grell and Freitas, 2014</u> <u>PDF</u>		
Old Simplified Arakawa–Schubert Scheme	option 4	Pan, H. L., and W. S. W convective parameterizs forecast model. <i>NMC of</i> <u>Pan et al., 1995</u> <u>PDF</u>		
Grell 3D Ensemble Scheme	option 5	Grell, Georg A., 1993: P by Cumulus Parameteri: doi:10.1175/1520-0493(PDF Grell, G. A., D. Devenyi, parameterizing convecti assimilation techniques. doi:10.1029/2002GL015 PDF		

Micro physics

5–class and 6–class Schemes	options 14 & 16	condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612. doi:10.1175/2009MWR2968.1 PDF
NSSL 2-moment Scheme and 2- moment Scheme with CCN Prediction	options 17 & 18	Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171–194. doi:10.1175/2009JAS2965.1 PDF
NSSL 1-moment 7- class Scheme	option 19	This is a single-moment version of the NSSL 2-moment scheme (see above). No paper is available yet for this scheme.
NSSL 1-moment 6- class Scheme	option 21	Gilmore, Matthew S., Jerry M. Straka, and Erik N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. <i>Mon.</i> <i>Wea.</i> Rev., 132 , 2610–2627. doi:10.1175/MWR2810.1 PDF
WRF Single Moment and Double Moment 7- class Schemes	options 24 & 26	Bae, S.Y., Hong, SY, & Tao, WK., 2018: Development of a single- moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. <i>Asia-Pac. J.</i> <i>Atmos. Sci.</i> doi:10.1007%2Fs13143-018-0086-3
Aerosol-aware & Hail/Graupel/Aerosol Thompson Schemes	options 28 & 38	Thompson, Gregory, and Trude Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71.10, 3636-3658. doi:10.1175/JAS-D-13-0305.1 PDF
HUJI SBM (Fast)	option 30	Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365–384. doi:10.1175/2009JAS3210.1 PDF
HUJI SBM (Full)	option 32	Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: model description and possible applications. J. Atmos. Sci., 61, 2963–2982. doi:10.1175/JAS-3350.1 PDF
P3	options 50, 51, 52	Morrison, Hugh, and Jason A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287-311. doi:10.1175/JAS-D-14-0085.1 PDF
Jensen ISHMAEL Scheme	option 55	Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predict- ing ice shape evolution in a bulk microphysics model. <i>J. Atmos. Sci.</i> , 74 , 2081–2104. doi:10.1175/JAS-D-16-0350.1 PDF
National Taiwan University (NTU) Scheme	option 56	Tsai, Tzu-Chin, and Jen-Ping Chen: Multimoment ice bulk microphysics scheme with consideration for particle shape and apparent density. Part I: Methodology and idealized simulation J. Atmos. Sci., 77-5, 1821-1850. doi:10.1175/JAS-D-19-0125.1

Planetary boundary layers

Cumulus Parameterizations

Grenier– Bretherton–McCaa Scheme	option 12	Urenier, Herve, and Christopher S. bretherton, 2001; A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. <i>Mon. Wea. Rev.</i> , 129 , 357–377. <u>doi:10.1175/1520- 0493(2001)129<0357:AMPPFL>2.0.CO;2</u> <u>PDF</u>
TKE (E)-TKE Dissipation Rate (Epsilon) (EEPS)	option 16	Zhang, C., Y. Wang and M. Xue, 2020: Evaluation of an E–ε and Three Other Boundary Layer Parameterization Schemes in the WRF Model over the Southeast Pacific and the Southerm Great Plains. <i>Mon.</i> Wea. <i>Rev.</i> , 148 , 1121–1145. <u>https://doi.org/10.1175/MWR-D-19-0084.1</u>
K-epsilon-theta^2 (KEPS)	option 17	Zonato, Andrea, A. Martilli, P. A. Jimenez, J. Dudhia, D. Zardi, and L. Giovannini, A new K-epsilon turbulence parameterization for mesoscale meteorological models. <i>Mon.</i> Wea. <i>Rev.</i> , 150 , 2157–2174. <u>doi:10.1175/MWR-D-21-0299.1</u> <u>PDF</u>
MRF Scheme	option 99	Hong, SY., and HL. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. <i>Mon.</i> <i>Wea. Rev.</i> , 124 , 2322-2339. doi:10.1175/1520- 0493(1996)124<2322:NBLVDI>2.0.CO.2 PDF
Gravity Wave Drag	gwd_opt = 1	Hong, Song-You, Jung Choi, Eun-Chul Chang, Hoon Park, and Young-Joon Kim, 2008: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523–531. doi:10.1175/2007WAF2007030.1 PDF Kim, Young-Joon, and Akio Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci. 52, 1875–1902.
		doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2 PDF Choi H, Hong S, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res., 120 doi:10.1002/2015JD024230 PDF
Wind–farm (drag) Surface Layer Parameterization Scheme	windturbine_spec	Fitch, Anna C., Joseph B. Olson, Julie K. Lundquist, Jimy Dudhia, Alok K. Gupta, John Michalakes, and Idar Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. <i>Mon. Wea. Rev.</i> , 140 , 3017–3038. doi:10.1176/MWR-D-11-00352.1 PDF
FogDES Scheme (details) grav_settling = 2		Katata, G. (2014), Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements. J. Geophys. Res. Atmos., 119 , 8137–8159 doi:10.1002/2014JD021669 PDF

Multi–scale Kain– Fritsch Scheme	option 11	Niyogi, 2016: Improving the Weather Research - updated Kain–Fritsch si doi:10.1175/MWR-D-15 PDF Glotfelty, T., K. Alapaty, Zhang, 2019: The Weat Aerosol–Cloud Interact and initial application. <i>I</i> doi:10.1175/MWR-D-18 PDF
New Simplified Arakawa–Schubert Scheme (for Basic WRF)	option 14	Han, Jongil and Hua–Li vertical diffusion schem Wea. Forecasting, 26, 5 PDF After V4.0 Kwon, YC. and SY. H parameterization schen Wea. Rev. 145, 585-59 doi:10.1175/MWR-D-16 PDF
New Tiedtke Scheme	option 16	Zhang, C. and Y. Wang Tropical Cyclone Activit Pacific in a 20-km-Mest 5923-5941. doi:10.1175/JCLI-D-18- PDF
New Simplified Arakawa-Schubert Scheme (for HWRF)	option 84	Han, Jongil and Hua–Lu vertical diffusion schem Wea. Forecasting, 26, 5 PDF
Grell–Devenyi (GD) Ensemble Scheme	option 93	Grell, G. A., and D. Dev parameterizing convect assimilation techniques doi:10.1029/2002GL019 PDF
Old Kain–Fritsch Scheme	option 99	Kain, John S., and J. M entraining/detraining plu convective parameteriz doi:10.1175/1520-0489 PDF

ions (cu_physics)

he Kain–Fritsch convective Ipdate. J. Appl. Meteor., 43, 170–181. (2004)043<0170:TKCPAU>2.0.CO:2

–Min Tan, 2009: Improving the behavior of rization for tropical cyclone prediction: nos. Res., 92, 190–211. 2008.09.022

Shortwave (ra_sw_physics) and Longwave (ra_lw_physics) Options Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107. Dudhia Shortwave Scheme sw option 1 doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 Mlawer, Eli, J., Steven, J. Taubman, Patrick, D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. *J. Geophys. Res.*, **102**, 16663–16682. <u>doi:10.1029/97JD00237</u> PDF RRTM Longwav Scheme lw option 1

Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3, 85pp.

The Step-Mountain Eta Coordinate Me of the convection, viscous sublayer, and emes. *Mon. Wea. Rev.*, **122**, 927–945. (<u>1994)122<0927:TSMECM>2.0.CO;2</u>

S. R., 2014: A scale and aerosol awar s. S. R., 2014: A scale and aerosol awar parameterization for weather and air qui m. Phys., 14, 5233-5250, doi:10.5194/a Shortwave and Longwave

Vu., 1995: Implementing a mass flux ation package for the NMC medium rar fflice note, **409.40**, 20–233.

Prognostic Evaluation of Assumptions Used rizations. *Mon. Wea. Rev.*, **121**, 764–787. 3(1993)121<0764:PEOAUB>2.0.CO;2

, 2002: A generalized approach to tion combining ensemble and data a. Geophys. Res. Lett., 29, 1693.

Zheng, Yue, K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. y, J. A. Herwene, A. D. Dei Genio, and D. ng high-resolution weather forecasts using and Forecasting (WRF) Model with an scheme. *Mon. Wea. Rev.*, **117-3**, 833-860. (5-0005.1)

y, J. He, P. Hawbecker, X. Song, and G. sather Research and Forecasting Model with ctions (WRF-ACI): Development, evaluation, . Mon. Wes. Rev., 147, 1491-1511. 18-0267.1

u Pan, 2011: Revision of convection and nes in the NCEP Global Forecast System. 520–533. <u>doi:10.1175/WAF-D-10-05038.1</u>

Hong, 2017: A mass-flux cumulus me across gray-zone resolutions. *Mon.* 3-0034.1

g. 2017: Projected Future Changes of ity over the Western North and South sh Regional Climate Model. *J. Climate*, **30**,

-0597.1

u Pan, 2011: Revision of convection and nes in the NCEP Global Forecast System 520–533. <u>doi:10.1175/WAF-D-10-05038.</u>

venyi, 2002: A generalized approach to tion combining ensemble and data ... Geophys. Res. Lett., 29(14).

lichael Fritsch, 1990: A one-dimensional ume model and its a zation. *J. Atmos. Sci.*, **47**, 2784–2802. 9(1990)047<2785:AODEPM>2.0.CO.2;

		L
New Goddard Shortwave and Longwave Schemes	lw/sw option 5	Chou, M. D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. <i>NASA Tech.</i> <i>Memo.</i> 104606, 15 , 40 pp. PDF Chou, M. D., M. J. Suarez, X. Z. Liang, and M. M. H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. <i>NASA Tech. Memo.</i> , 104606, 19 , 68 pp. PDF
Fu–Liou–Gu Shortwave and Longwave Schemes	lw/sw option 7	Gu, Y., Liou, K. N., Ou, S. C., and Fovell, R., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119. doi:10.1029/2010JD014574 PDF Fu, Qiang, and K. N. Liou, 1992: On the correlated k- distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139– 2156. doi:10.1175/1520- 0489(1992)049<2139:OTCDMF>2.0.CO;2 PDF
RRTMG–K Shortwave and Longwave Schemes	lw/sw option 14	Baek, Sunghye, 2017, A revised radiation package of G- packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9. doi:10.1002/2017/MS000994 PDF
Held–Suarez Relaxation Longwave Scheme	sw option 31	
FDL Shortwave Ind Longwave Schemes	lw/sw option 99	Fels, Stephen, B., and M. D. Schwarzkopf, 1981, An efficient, accurate algorithm for calculating CO2 15 µm band cooling rates. J. Geophys. Res., 86, 1205–1232. doi:10.1029/JC0886C02p01205 PDF

and more....

WRF model available options,

for microphysics, PBL, Cumulus, shortwave, ...

WRF Physics Suites may be the way forward...?

Nudging, if so what to nudge, or full data assimilation 4DVAR?

Meteorology - ERA5 downscaled with the WRF model in southeast Asia

The WRF model is used here to downscale the ERA5 reanalysis to the required resolution (in this case 0.11° × 0.11°)

We are currently evaluating if nudging the relative humidity is beneficial or not to our WRF model results

Summary plot for mean bias for the 2m T - SEA WRF domain

hourly values for January

Variable	n	FAC2	MB	NMB	RMSE	r
air temperature (K)	251	1	-0.4	0	1.1	0.94
dew point temperature (K)	249	1	-0.5	0	1.1	0.96
relative humidity (%)	249	1	0.3	0	4.9	0.79
sea level pressure (hPa)	154	1	0.3	0	0.7	0.92
accumulated precip (mm)	156	0.68	-204.2	-0.13	919.4	0.56
wind speed (m s ⁻¹)	251	0.96	0.2	0.05	1	0.72

Meteorology - What about Rainfall?

SINGAPORE CHANGI INTL (lon: 103.994, lat: 1.35) in 2018 CHENNAI INTL (lon: 80.181, lat: 12.994) in 2

BHOPAL (lon: 77.337, lat: 23.287) in 2018

PHUKET (lon: 98.4, lat: 7.883) in 2018

Emissions input

1	1
L	

2018 SO_x monthly emission from HTAPv3 (mgm⁻²)

UK Centre for Ecology & Hydrology

https://edgar.jrc.ec.europa.eu/dataset htap v3 https://www.ceip.at/webdab-emission-database/emissions-as-used-in-emep-models https://www.imo.org/en/MediaCentre/PressBriefings/Pages/44-ECA-sulphur.aspx

2018 SO_x monthly emission from the EMEP website (mgm⁻²)

2.4 6 24 48 120 240 360 600

"Ships trading in designated emission control areas will have to use on board fuel oil with a sulphur content of no more than 0.10% from 1 January 2015, against the limit of 1.00% in effect up until 31 December 2014"

This is an example of uncertainties/representativity of anthropogenic emissions sources.

Biogenic emissions; calculated online in ACTM (e.g. isoprene from vegetation, sea salt, dust, etc..), or as an input from satellite derived product (forest fires), do all participate in the overall uncertainties

EMEP-WRF applications

What is the effect of removing all UK NH_3 emissions

Kelly, J. M., Marais, E. A., Lu, G., Obszynska, J., Mace, M., White, J., and Leigh, R. J.: Diagnosing domestic and transboundary sources of fine particulate matter (PM2.5) in UK cities using GEOS-Chem, City and Environment Interactions, 18, 100100, https://doi.org/10.1016/j.cacint.2023.100100, 2023.

Vieno, M., Heal, M. R., Williams, M. L., Carnell, E. J., Nemitz, E., Stedman, J. R., and Reis, S.: The sensitivities of emissions reductions for the mitigation of UK PM2.5, Atmos. Chem. Phys., 16, 265-276, 10.5194/acp-16-265-2016, 2016

• A 100% reduction of UK anthropogenic NH₃ emissions is associated with up to 50% of $PM_{2.5}$ reductions. This broadly agrees with other studies (ACP Vieno et al 2016, Kelly et al 2023).

• However, this may be misleading as without HNO_3 and H_2SO_4 there will not be much NH_4^+ around in Europe.

• In other parts of the world (for example South Asia) this may not be the case as HCI emissions are very substantial and NH_4CI is a significant fraction of the total PM_{25}

What is the effect of biomass burning in Southeast Asia

GFAS dataset:

HTAPv3:

Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C., Dore, C., Guizzardi, D., Muntean, M., Schaaf, E., and Friedrich, R.: Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012, Atmos. Chem. Phys., 17, 7683–7701, doi:10.5194/acp-17-7683-2017, 2017

UK Centre for Ecology & Hydrology

- The simulation was done for the year 2019
- The figures show the annual mean (from hourly values)
- HTAPv3 emissions
- Daily Forest fires derived from the Global Fire Assimilation System (GFAS)

EMEP-WRF, evaluation, missing processes, missed rain event, and observations...

South Asia 2018 daily mean PM₂₅

- The model shows similar patterns for $PM_{2.5}$ at several Indian sites
- Other pollutants such as ozone are not what we expected, but when compared with measurement campaign, the model better captures ozone concentrations
- Sulphur dioxide also shows some "uncharacteristic" patterns in the observations

Central Pollution Control Board

Ministry of Environment, Forest and Climate Change Government of India

https://cpcb.nic.in/

Data uploaded using MOHAMED SHIRAZ notebook India's Air Quality: EDA and Prediction | Kaggle Python · geojson, Air Quality Data in India (2015 -2020)

Deposition velocity and non-linearity

 PM_{25} sensitivity to a reduction of NH_3 emissions - 10%, 20%, ..., 100% NH_3 reduction Sensitivity of SO_4^{2-} , NO_3^{-} , NH_4^+ and $PM_{2.5}$ to ammonia reductions in South Asia

Figure 1.9. Dependence of the SO₂ canopy resistance on the ratio of the SO₂ and NH₃ air concentration of the previous 24 hours, combining data from two different field sites: (a) measurements and (b) parameterisation.

In the EMEP model the deposition velocity of SO_2 is a function of the SO_2/NH_3 ratio

Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., . . . Erisman, J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmospheric Environment, 43, 5193-5267, DOI 10.1016/j.atmosenv.2009.07.068, 2009.

- ACTMs have been made easily accessible to all researchers' community •
- Uncertainty analysis is still an issue?
- Model evaluation is relatively easy in some parts of the world (e.g. US, China, and the EU)
- Model accuracy is also difficult to assess
- Ensembles of air quality models may provide a better understanding of uncertainties

HOWEVER,...

Conclusions

EMEP4UK daily average at the AURN Chilbolton observatory site

The model captures the timing and magnitude of the elevated PM_{25}

Other models may do even better which suggests that the uncertainties/errors are not too large...

In 1976, a British statistician named George Box wrote the famous line, "All models are wrong, some are useful"

I prefer to say, "All models are an incomplete representation of reality", but not necessarily wrong.

Thank You

For more information please contact:

mvi@ceh.ac.uk

Ge, Y. et al., A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols, ACP, 10.5194/acp-22-8343-2022, Gu, B., et al.,, Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM(2.5) air pollution, Science, 374, 758-762, 10.1126/science.abf8623, 2021. Simpson, D. et al.,: The EMEP MSC-W chemical transport model - technical description, Atmos. Chem. Phys., 12, 7825-7865, 10.5194/acp-12-7825-2012, 2012 Vieno, M. et al.,: The sensitivities of emissions reductions for the mitigation of UK PM2.5, Atmos. Chem. Phys., 16, 265-276, 10.5194/acp-16-265-2016, 2016a. Vieno, M. et al.,: The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust, Environmental Research Letters, 11, 044004, 2016b

UK Centre for Ecology & Hydrology NATIONAL CAPABILITY International science for net zero plus

FOR GLOBAL CHALLENGES

And the set

EMEP4UK daily average at the Chilbolton observatory

... recent studies shows the importance of HCI emissions in Delhi

Pawar et al. shows that adding HCl emissions over Delhi the results agree better with the observed PM_{25}

Observations Mo HCl Base Case HCl 3×Base HCl

Box-and-whisker plot for trace gases and secondary inorganic aerosols from the observations (MARGA) and simulated in sensitivity test with changes in HCl emissions in no HCl (0 mol km⁻² h⁻¹), base case HCl (24.8 mol km⁻² h⁻¹), and 3 × base HCl (74 mol km⁻² h⁻¹) runs at IGIA, Delhi.

Pawar, P. V., Ghude, S. D., Govardhan, G., Acharja, P., Kulkarni, R., Kumar, R., Sinha, B., Sinha, V., Jena, C., Gunwani, P., Adhya, T. K., Nemitz, E., and Sutton, M. A.: Chloride (HCl / Cl-) dominates inorganic aerosol formation from ammonia in the Indo-Gangetic Plain during winter: modeling and comparison with observations, Atmos. Chem. Phys., 23, 41-59, https://doi.org/10.5194/acp-23-41-2023, 2023.

UK Centre for Ecology & Hydrology

NATIONAL CAPABILITY FOR GLOBAL CHALLENGES International science for net zero plus

Hour of the day

Acharja, P., Ali, K., Trivedi, D.K., Safai, P.D., Ghude, S., Prabhakaran, T., Rajeevan, M. (2020) Characterization of atmospheric trace gases and water soluble inorganic chemical ions of PM1 and PM2.5 at Indira Gandhi International Airport, New Delhi during 2017-18 winter. Science of the Total Environment 729, 138800.

Natural **Environment Research Council**

EMEP rv4.45 and HCl extension

We used a global HCl and primary pCl emissions at 0.1 x 0.1 degrees (Zhang et al., 2022)

Zhang, B., Shen, H., Yun, X., Zhong, Q., Henderson, B.H., Wang, X., Shi, L., Gunthe, S.S., Huey, L.G., Russell, A.G., Liu, P. (2022) Global Emissions of Hydrogen Chloride and Particulate Chloride from Cont Sources. Environmental Spiercer Technology 56, 3894-3904OR GLOBAL CHALLENGES

International science for net zero plus

(a) HCI emission

EMEP-WRF global 2015 evaluation

Asia

Ge, Y., Heal, M. R., Stevenson, D. S., Wind, P., and Vieno, M.: Evaluation of global EMEP MSC-W (rv4.34) WRF (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements, Geosci. Model Dev., 14, 7021-7046, https://doi.org/10.5194/gmd-14-7021-2021, 2021

UK Centre for Ecology & Hydrology NATIONAL CAPABILITY FOR GLOBAL CHALLENGES International science for net zero plus

Based on Ge et al. 2021 but for the SANH 2015 BASE run

Natural **Environment Research Council**

NATIONAL CAPABILITY FOR GLOBAL CHALLENGES International science for net zero plus

Lloyd's (2012) ECA Calculator—Helping you plan your compliance with MARPOL Annex VI, Regulation 14

Natural **Environment Research Council**

EMEP-WRF BASE run vs. observations at some sites (daily average for 2015) - Yuanlin Wang

